

Tech Talk Presents

Efficiently Coding
Communications Protocols

in C++

Efficiently Coding Communications Protocols in C++

 - 2 -

About Tech TalkAbout Tech TalkAbout Tech TalkAbout Tech Talk

Tech Talk is a series of white papers created by engineers at Mantaro to share our
knowledge in different technical areas. With a diverse and progressive set of clients,
Mantaro has a rich history of staying at the leading edge of the technology curve. To keep
the entire engineering team updated on the latest tools, trends, and technology, Mantaro
holds regular meetings where engineers share their findings. Tech Talk captures this wealth
of knowledge in the form of white papers which are made available to the general pubic
through our website. If you have any questions or comments, please email us at
techtalk@mantaro.com.

About MantaroAbout MantaroAbout MantaroAbout Mantaro

Mantaro provides a full range of product development services including analog, digital, and
RF hardware design, FPGA design, embedded system development, and RFI/EMI design
consulting. Our technical staff comprises of highly talented professional engineers with a
history of successful product development and innovative design experience. We are an
Altera Certified Design Center, Xilinx Alliance Program Member, Analog Devices DSP Third
Party Developer, TI Low Power Wireless Third Party Developer, Cavium OCTEON Partner,
WiPower Design Partner, Tilera Design Partner, Sparsense Design Partner, etc providing
industry leading FPGA and hardware/software experience. Mantaro continues to grow by
exceeding customer’s expectations and acting as extensions of their engineering team.

Mantaro maintains its headquarters and lab facilities in our Germantown, Maryland location.
Mantaro’s lab environment fosters the continual professional development of our staff and
allows us to leverage our collective development experience and established methodologies
to reduce both the time and costs associated with delivering high quality products.
Mantaro’s processes are based on our commitment to excellence and grounded in
maintaining a close partnership with our clients throughout all phases of a project.

Contact InformationContact InformationContact InformationContact Information

Mantaro Product Development Services, Inc.

20410 Century Blvd, Suite 120

Germantown, MD 20874

301-528-2244

www.mantaro.com

techtalk@mantaro.com – comments about Tech Talk

sales@mantaro.com – information on Mantaro’s services

info@mantaro.com all other inquiries

Efficiently Coding Communications Protocols in C++

 - 3 -

Efficiently Coding Communications Protocols in C++

Harvey A. Sugar - Hsugar@mantaro.com

What is Efficient Coding?

Efficient coding could have two meanings. First efficient coding could refer to making the best

use of a developer’s time when coding and debugging and embedded application. Second

efficient coding could refer to developing code that has high performance using the minimum of

processor and memory resources when executing. This paper I will show how using C++ classes

to implement a communications protocol can improve the developer’s efficiency then I will

discuss some techniques for improving the execution efficiency.

C++ and Development Efficiency

The C++ object model helps speed development in two ways. First through abstraction or

information hiding, C++ allows us to divide and conquer complex applications like

communications protocols. Information hiding is one of the most powerful tools we have for

dealing with complexity. The C++ object model allows a developer to explicitly define what

information is to be hidden through the use of private data. The C++ object model is far superior

to C’s module concept which is only enforced by programming conventions and not enforced by

the language rules. C modules only work well if everyone follows the rules.

Second, we can use C++ classes to closely model the concepts defined in a communications

protocol’s specification. In the following sections we will see how a direct one-to-one mapping

between the protocol specification and C++ classes and methods can be achieved. By using the

same concepts and terminology in the software as is used in the protocol specification, the code

becomes easier to implement, understand and maintain.

Notice Copyright © 2006 By Harvey A. Sugar

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided

copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the

first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific written permission.

Efficiently Coding Communications Protocols in C++

 - 4 -

Protocol Layer Model

Communications protocol specifications usually contain three primary components: the message

encapsulation or envelope, the message semantics and the protocol state. The figure below

shows a class diagram for a protocol layer.

Protocol

Receiver

processOctetStream()

State

processEvents()

Transmitter

processActions()

The receiver is responsible for processing the incoming octet stream. It validates the message

and removes the encapsulation. The receiver also acts as a de-multiplexer, passing messages to

the upper layers or translating the messages into events that are processed by the state machine.

The state machine processes protocol events which may be specific messages from the lower

layers or other types of events from the upper or lower protocol layers.

The transmitter implements actions requested by the state machine by translating them into

protocol messages. The transmitter also encapsulates messages from the upper protocol layers

and passes the encapsulated messages to the lower protocol layers.

From Models to Code – Implementing the Point-to-Point Protocol

Now we will look at a specific protocol, the Point-to-Point Protocol (PPP) as defined in RFC-

1661. The Point-to-Point protocol is actually a family of protocols sharing the same

encapsulation. A PPP implementation must include the Link Control Protocol (LCP) and one or

more Network Control Protocols, one for each network protocol supported. The most common

Network Control Protocol is the IP Control Protocol or IPCP. A PPP implementation may also

include one or more authorization protocols. So the actual structure of the PPP layer is a bit

more complex than the idealized structure shown above. The figure below shows the structure

for the PPP protocol. It include of a single receiver and transmitter that implement the message

encapsulation and message semantics. The LCP, each NCP and each authorization protocol

include a context and their own state.

Efficiently Coding Communications Protocols in C++

 - 5 -

PPP

Receiver

processOctetStream()

LcpState

processEvents()

Transmitter

processActions()

IpcpState

processEvents()

AuthState

processEvents()

Lcp Ipcp Auth

PPP LCP Details

Implementing the complete family of protocols that make up PPP is beyond the scope of this

paper so we will concentrate on the LCP for our example. The following table shows a list of

events and actions defined in RFC-1661:

 Events Actions

Up Lower Layer is Up Tlu This layer up

Down Lower Layer is Down Tld This Layer Down

Open Administrative Open Tls This Layer Started

Close Administrative Close Tlf This Layer Finished

TO+ Time Out with counter > 0 Irc Init Retry Count

TO- Time Out with counter = 0 Zrc Zero Retry Count

RCR+ Recv Config Request (Good) Scr Send Config Request

RCR- Recv Config Request (Bad) Sca Send Config Ack

RCA Recv Config Ack Scn Send Config Nack

RCN Revc Config Nack Str Send Terminate Request

RTR Recv Terminate Request Sta Send Terminate Ack

RTA Recv Terminate Ack Scj Send Code Reject

RUC Recv Unknown Code Ser Send Echo Reply

RXJ+ Recv Code or Protocol Reject

(Permitted)

RXJ- Recv Code or Protocol Reject

(Catastrophic)

RXR Recv Echo Request or Reply or Recv

Drop Request

Efficiently Coding Communications Protocols in C++

 - 6 -

RFC-1661 also defines ten states for the PPP LCP; 0 - Initial, 1 - Starting, 2 - Closed, 3 -

Stopped, 4 - Closing, 5 - Stopping, 6 - Request-Sent, 7 - Ack-Received, 8 - Ack-Sent, and 9 -

Opened. With the events, actions and states defined, RFC-1661 goes on to define the protocol’s

behavior shown in the state table. The table’s rows represent the events and the columns

represent the states. The actions and next state are show for each event in each state. The empty

cells are invalid events for that state.

Events States

 0 1 2 3 4 5 6 7 8 9

Up 2 Irc,src/6 - - - - - - - -

Down - - 0 Tls/1 0 1 1 1 1 Tld/1

Open Tls/1 1 Irc,

scr/6

3 5 5 6 7 8 9

Close 0 Tlf/0 2 2 4 5 Irc,str/4 Irc,str/4 Irc,str/4 Tld,irc,str/4

TO+ - - - - Str/4 Str/5 Scr/6 Scr/6 Scr/6 -

TO- - - - - Tlf/2 Tlf/3 Tlf/3 Tlf/3 Tlf/3 -

RCR+ - - Sta/2 Irc,

scr,sca/8

4 5 Sca/8 Sca,

tlu/9

Sca/8 Tld,

scr,sca/8

RCR- - - Sta/2 Irc, scr,

scn/6

4 5 Scn/6 Scj/7 Scn/6 Tld, scr,

scn/6

RCA - - Sta/2 Sta/3 4 5 Irc/7 Scr/6 Irc,

tlu/9

Tld, scr/6

RCN - - Sta/2 Sta/3 4 5 Irc,

scr/6

Scr/6 Irc,

scr/8

Tld, scr/6

RTR - - Sta/2 Sta/3 Sta/4 Sta/5 Sta/6 Sta/6 Sta/6 Tld, scr,

sta/5

RTA - - 2 3 Tlf/2 Tlf/3 6 6 8 Tld, scr/6

RUC - - Scj/2 Scj/3 Scj/4 Scj/5 Scj/6 Scj/7 Scj/8 Scj/9

RXJ+ - - 2 1 4 5 6 6 8 9

RXJ- - - Tlf/2 Tlf/3 Tlf/2 Tlf/3 Tlf/3 Tlf/3 Tlf/3 Tld, irc,

str/5

RXR - - 2 3 4 5 6 7 8 Ser/9

Efficiently Coding Communications Protocols in C++

 - 7 -

The State Pattern

The table shows the complexity of the protocol’s behavior and coding this state machine as C

case statements or if-else statements is a daunting task. However, the protocol state is easily

implemented as a number of simple C++ classes using the State Pattern described in Design

Patterns by Gamma, et al. shown below.

Context

event()

State

handleEvent()

ConcreteState

handleEvent()

ConcreteState

handleEvent()

ConcreteState

handleEvent()

The Context object in the state pattern contains a pointer to a concrete State object. Events to be

processed by the context are deferred to a handleEvent() method in the concrete State thus all

event handling is determined by the context’s current state.

Efficiently Coding Communications Protocols in C++

 - 8 -

The LcpContext and LcpState Base Class

The class declaration for the LcpContext is show below. Note that we have declared methods for

every event and action defined by the protocol. The LcpState class is declared as a friend class so

that it has access to private methods for executing actions and to change the LcpContext’s state.

class LcpContext
{
public:
 LcpContext(LcpState* initialState, PppTransmitter* transmitter);
 ~LcpContext();

 // Events
 void up();
 void down();
 void open();
 void close();
 void timeOut();
 void timeOutRetryExpired();
 void rcvConfigReqGood();
 void rcvConfigReqBad();
 void rcvConfigAck();
 void rcvConfigNakRej();
 void rcvTermReq();
 void rcvTermAck();
 void rcvUnknownCode();
 void rcvCodeProtRejPermitted();
 void rcvCodeProtRejCatastrophic();
 void rcvEchoReq();
 void rcvDiscardReq();

private:
 friend class LcpState;

 // Actions
 void thisLayerUp();
 void thisLayerDown();
 void thisLayerStarted();
 void thisLayerFinished();
 void initRetryCount();
 void zeroRetryCount();
 void sendConfigReq();
 void sendConfigAck();
 void sendConfigNakRej();
 void sendTermReq();
 void sendTermAck();
 void sendCodeRej();
 void sendEchoReply();

 void changeLcpState(LcpState* state);
 LcpState* _state;
 LcpTimer* _timer;
 PppTransmitter* _transmitter;
};

Efficiently Coding Communications Protocols in C++

 - 9 -

The implementation of the event methods is simple. The event processing is simply deferred to

the State object pointed to by _state.

void LcpContext::up()
{
 _state->up(this);
}

The action methods are also simple, deferring the processing to a transmitter or timer object.

This decouples the State objects from the PppTransmitter, PppReceiver, and LcpTimer classes so

that the state classes can be easily used for a number of PPP applications such as PPP over

Ethernet (PPPOE) or Packet Over SONET (POS):

void LcpContext::sendConfigReq()
{
 _trasnmitter->sendConfigReq(this);
}

The declaration of the base class LcpState is shown below. Again, we have declared methods for

each of the events listed in the PPP LCP specification in RFC-1661.

class LcpState
{
public:
 virtual ~LcpState();
 virtual void up(LcpContext* lcpContext);
 virtual void down(LcpContext* lcpContext);
 virtual void open(LcpContext* lcpContext);
 virtual void close(LcpContext* lcpContext);
 virtual void timeOut(LcpContext* lcpContext);
 virtual void recvConfigReq(LcpContext* lcpContext);
 virtual void recvConfigAck(LcpContext* lcpContext);
 virtual void recvConfigNak(LcpContext* lcpContext);
 virtual void recvTermReq(LcpContext* lcpContext);
 virtual void recvTermAck(LcpContext* lcpContext);
 virtual void recvUnknownCode(LcpContext* lcpContext);
 virtual void recvCodeRej(LcpContext* lcpContext);
 virtual void recvProtRej(LcpContext* lcpContext);
 virtual void recvEchoReq(LcpContext* lcpContext);
 virtual void recvEchoReply(LcpContext* lcpContext);
 virtual void recvDiscardReq(LcpContext* lcpContext);

protected:
 void changeLcpState(LcpContext* lcpContext, LcpState* state);
};

Efficiently Coding Communications Protocols in C++

 - 10 -

Each concrete state class will override the default event methods defined by the LcpState base

class except when a specific event is invalid for that state. These cases are shown indicated by

blank entries in the state table. In these cases, we simply log the error.

LcpState::up(LcpContext* lcpContext()
{
 Logger::log(“Invalid LCP Event up Receved”);
}

The Concrete LcpState Classes

We now go on to define concrete LcpState classes for each of the ten states specified in RFC-

161. In each of the concrete LcpState classes we simply define methods to handle each of the

valid events that can be received in that state. These methods simply execute the actions defined

in the PPP LCP State Table. For example, here is the rcvConfigAck method for the

AckSentLcpState class:

AckSentLcpState::rcvConfigAck(LcpContext* lcpContext)
{
 lcpContext->initRetryCount();
 lcpContext->thisLayerUp();
 changeLcpState(lcpContext, getInstance::OpenedLcpState());
}

Execution Efficiency

Now we will look at some coding techniques for execution efficiency. Many C programmers are

concerned with the overhead associated with using C++ virtual functions and inheritance so I

will address those concerns first. Then I will discuss some design level strategies for efficient

coding in C++; minimizing context switching, lockless queues, and avoiding dynamic memory

allocation..

Virtual Function Overhead

Polymorphism using virtual methods and inheritance are the hall marks of object oriented

programming in C++ so it is important to examine the run time costs of using these language

features. The code generated by different compilers can vary; most C++ compilers use the

following strategy for implementing virtual functions.

Let’s go back to our LcpState and AckSentLcpState classes. The compiler must implement a

way to determine which version of the event methods to execute based on the type of the

LcpState object pointer, _state, in the LcpContext. This is usually done by the C++ compiler by

adding a table of function pointers to the class. This table is refered to as the virtual table. If we

consider only the first three event methods in out LcpState classes the virtual table might look

like this:

Efficiently Coding Communications Protocols in C++

 - 11 -

LcpState AckSentLcpState

LcpState::up() LcpState::up()

LcpState::down() AckSentLcpState::down()

LcpState::open() AckSentLcpState::open()

Since the AckSentLcpState class does not implement an up method, the up methods slot in the

table is filled in with the default up method defined in the LcpState base class.

_State

LcpContext

vptr

LcpState

object

vtable

up

LcpState::up()

How is the virtual table found at run time? Each object that has virtual functions contains a

hidden data member, the virtual pointer, placed in it by the compiler. At run time, _state points

to an LcpState object and the object’s virtual pointer points to the virtual table. The equivalent C

code looks something like this:

LcpContext._state->vptr->(void vtable[UP])();

So the added cost is the time it takes to resolve two pointers. The other cost is in the memory

required to hold the virtual table. For our state machine the table is quite large but there usually

not many states, less than a dozen for most protocols.

Minimize Context Switching

Context switching can incur a huge execution cost. First there is the cost of saving and restoring

the current context. The cost is even greater on a high performance processor where a context

switch negates the effectiveness of instruction prefetching, chaching, and pipelining.

Efficiently Coding Communications Protocols in C++

 - 12 -

Context switching can be minimized by carefully designing the threading or tasking for the

protocol stack. Traditionally protocol stacks have been designed with separate threads for

separate layers. Van Jacobson, a well known network researcher and author of several RFCs

once said: “Layers are a good way to think about communications protocols but a lousy way to

implement them.” I would change this statement slightly. Translating a human readable

protocol specification into a programming language that is both readable by a computer or a

human requires a lot of thinking. We use languages like C++ because they allow us to use

higher levels of abstraction that more closely represent the real world concepts we are trying to

implement. Since communications protocols are specified in layers we should use the power of

C++ to model this concept in our code. Layers are a good way to code communications

protocols but a lousy way to execute that code.

Different threads are really only required when there is a speed mismatch between physical

processes so that software servicing those processes must be executed asynchronously. Using

TFTP to download files to a FLASH file system for example might only require three threads,

one to process received packets, one to write data to FLASH, and one thread to transmit

acknowledgement packets.

UDP Rx

TFTP Rx

PPP Rx

IP Rx

FLASH

FILE SYS

UDP Tx

PPP Tx

IP Tx
Receive

Thread

Transmit

Thread

FLASH

File System

Thread

Lockless Queue

Another source of context switches is system calls. Every time a system call is made, there are

two context switches. First when the operating system is invokes, second, when the operating

system passes control to the highest priority run-able task. Minimizing the number of tasks will

not help if every time a message is placed in a queue, the operating system is invoked. This can

be avoided by using lockless queues.

Efficiently Coding Communications Protocols in C++

 - 13 -

A lockless queue is a queue that is written to be thread-safe without using operating system

synchronization functions. This is possible when there is only one thread writing to the queue

and only one thread reading from the queue.

TailHear TailHead

TailHead

Queue Empty Items in Queue

Queue Full

The lockless queue consists of an array of object pointers, a head pointer and a tail pointer. The

key to the lockless queue is that the writing thread is only allowed to modify the head pointer and

the reading thread is only allowed to modify the tail pointer.

Here is the constructor. The queue itself is an array of pointers to unsigned char i.e. octets or

bytes. The head and tail are indexes into this array. I want the queue size to be a power of 2 so

that I can do some optimization when the array indexes need to roll over from the end of the

array back to zero.

// Size is specified as power of 2
// i.e. if size = n then queue size is 1 << n

LocklessQueue::LocklessQueue(unsigned int size) :
 _size(1 << size),
 _mask(_size - 1),
 _head(0),
 _tail(0)
{
 _queue = new unsigned char*[_size];
}

Next is the push method which pushes a new message buffer into the queue. We make a local

copy of the _head index to work with. Note that while push reads the tail index, it only modifies

the head index. In the worst case another thread is doing a pop operation while push is being

executed. If push reads a stale version of tail the queue might appear full when it has one entry

left, so the buffer would be discarded.

Efficiently Coding Communications Protocols in C++

 - 14 -

void LocklessQueue::push(unsigned char *buffer, bool *full)
{
 unsigned int tail = _tail;

 if((tail++) & _mask == _head)
 {
 *full = true;
 }
 else
 {
 _queue[tail] = buffer;
 _tail = tail;
 *full = false;
 }
}

Note the head index is masked with the _mask value that was calculated in the constructor from

the size. This does the required roll over to zero at the end of the array with about the same

overhead as a compare to queue size that would be required otherwise.

The pop method is shown next. The pop method reads the head index but only modifies tail.

The worst case in the pop method is if a stale _head value is read. The queue would appear

empty when there is one message in the queue. The thread calling the pop method would simply

miss an opportunity to process the message. When the queue is almost empty this should not

pose a performance problem.

unsigned char *LocklessQueue::pop(bool *empty)
{
 unsigned char *buffer = 0;
 unsigned int head = _head;

 if(_head != tail)
 {
 buffer = _queue[head];
 head = (head + 1) & _mask;
 _head = head;
 *empty = false;
 }
 else
 {
 *empty = true;
 }

 return buffer;
}

Note that this function requires that the steps be done in the order they are coded. It may be

necessary to turn off optimization for the lockless queue class though I haven’t experienced any

problems with this implementation using optimization with several compilers on different

processors.

Efficiently Coding Communications Protocols in C++

 - 15 -

There are more complex lockless data structures that can be applied to inter-process

communication or dynamic memory allocation. These data structures are implemented using

special atomic processor instructions so they must be partially coded in assembly language.

Avoid Dynamically Allocating and Freeing Memory

C++ is notorious for unexpectedly creating copies of objects but this reputation is not deserved.

Most of the time you want to pass pointers to objects or references to objects but if you are not

careful about this C++ will make temporary copies. This can happen when you pass an object as

a parameter to a function or return an object from a function. You can prevent accidentally

passing objects around when you want to pass pointers or references by making the copy

constructor and the = operator private.

Class MyClass
{
public:

private:

 MyClass(const MyClass&);
 MyClass& operator=(const MyClass&);
};

If you define a class this way and try to pass a copy of an object instead of a pointer, the

compiler will complain about it.

Alternative new() and delete()

Some types of objects such as message buffers are created and deleted over-and-over in

networking software. The default implementation for new() and delete() is to use malloc() and

free() from the standard C library for managing memory. In cases where you are using the same

types of objects over-and-over an optimized memory manager can be used for these specific

objects. new() and delete() are simply operators that you can over-ride like any other operator in

C++.

There are several alternatives for obtaining and managing memory for your more dynamic

objects. A pool of objects can be defined statically if the system’s resource needs are well

understood. malloc() can be used to create a large block of memory for storing a number of

objects at a time so that malloc() and free() aren’t called as often. Another alternative is to cache

objects once the have been allocated using malloc(). The objects are never really freed but

instead are saved in a pool for reuse. When the pool becomes empty, additional objects are

created in the usual way using malloc(). A variation on this approach is the cache a specific

number of objects, freeing addition objects if the pool is full and allocating new ones when the

pool becomes empty.

Efficiently Coding Communications Protocols in C++

 - 16 -

Conclusion

Using object oriented programming in C++ can improve the developer’s efficiency in

implementing communications protocols. We have seen one example of how using the State

pattern simplifies developing the code for the PPP Link Control Protocol. With careful use, C++

does not add intolerable overhead to executing communications protocol software. Several

strategies were presented for developing efficient communications protocol software at a system

level demonstrating that C++ can be used to develop high performance networking software.

References

Simpson, W. The Point-to-Point Protocol(PPP) RFC-1661. Daydreamer Computer Systems

Consulting Services, July 1994.

Gamma, E. Helm, R. Johnson, R. and Vlissides, J. Design Patterns; Elements of Reusable

Object-Oriented Software. Addison-Wesley Publishing Company, Reading, MA 1994.

Lippman, S. Inside the C++ Object Model. Addison-Wesley Publishing Company, Reading, MA

1996

Meyers, S. Effective C++; 55 Specific Ways to Improve Your Programs and Designs, Third

Edition. . Addison-Wesley Publishing Company, Reading, MA 2005.

Meyers, S. More Effective C++; 35New Ways to Improve Your Programs and Designs, Third

Edition. . Addison-Wesley Publishing Company, Reading, MA 1996.

Jacobson, V. and Felderman, B. Speeding Up Networking. Linux.conf.au 2006, Dunedin, NZ

Dokumentov, A. Lock-free Interprocess Communication. Dr. Dobbs Portal, June 15, 2006.

Harvey Sugar is a senior software engineer at Mantaro Product Development Services, Inc. He has over 25 years

of experience in systems and software engineering, developing real-time embedded systems primarily for

telecommunications and data network products. He has worked with communications technologies including; packet

switching, optical networking, satellite communications, telephony, and wireless. He has implemented

communications protocols including TCP/IP, Frame Relay, ATM, SS7 and Packet Over SONET. Some of his

accomplishments include: pioneering the use of Object Oriented design and C++ programming in developing a

software framework for telecommunications test equipment and leading the development of the first production

ADSL test set Harvey can be reachd via email at hsugar@mantaro.com.

